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ABSTRACT
Interacting with long lists of instructions or ingredients continues
to be a challenge for conversational interaction. In this paper, we
conducted a user study to experiment with the use of ‘cued-gaze’
– waiting for the user’s visual attention – to manage the delivery
of instructions with a voice agent. In a Wizard-of-Oz setting, 12
participants were instructed to build a simple Lego tower by a
conversational agent and were able to advance in the list using
either speech interaction, or gaze interaction. The increasing use
of speech agents in real-world cause users to encounter failures in
interactions, so in this task the agent was designed to fail when
providing the list of instruction to explore how the participants
proceeded to recover from common failures. This showed that,
for this use case, cross-modality repair was more effective than
reformulation of speech.
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• Human-centered computing→ Interaction design; Empiri-
cal studies in interaction design.
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1 INTRODUCTION
Despite the challenges of interacting with computers with voice
commands, devices incorporating conversational user interfaces
(CUIs) are becoming pervasive in everyday life. They present hands-
free and screen-less interaction and encourage users to engage
using a natural and familiar modality that supposedly does not re-
quire them to learn new technical concepts or interaction methods.
However, the CUIs available today are set up to fail when these ex-
pectations meet the natural spoken interactions with and between
humans [7].
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Users come with a set of expectations about how spoken conver-
sation should work that is outside the capability of today’s speech
technology [33]. A recurring theme of research into conversational
agents (CAs) is that “user expectations of CA systems remain far
from the practical realities of use” [40]. For example, in real use,
there is often overlapping speech, less clearly spoken commands,
and back-channel noise in home environments. Consider partici-
pants in Luger and Sellen’s study of CA users, who “described mak-
ing use of a particular economy of language. Dropping words other
than ‘keywords’, removing colloquial or complex words, reducing
the number of words used, using more specific terms, altering enun-
ciation, speaking more slowly/clearly, and changing accent was the
most commonly described tactics” [40]. When speech technologies
fail, users become increasingly frustrated with the device and tend
to blame themselves [40]. Porcheron et al. [50] suggest that future
work on voice user interfaces (VUIs) should, for the time being,
shift “from conversation design to [ . . . ] request/response design”.

To design conversational agents that could meet this longer-term
goal, we need to understand the full range of behavior users expect
to leverage when they initially approach a conversational inter-
face. Natural conversation is a complex speech-exchange system,
which Harvy Sacks called a ‘machinery’. He stated that “Human
conversation consists of a generic speech-exchange system that
is continually adapted by speakers to different activities and situ-
ations” [53]. Conversations with the CUIs could be improved by
applying the formal knowledge of human conversation with turn-
taking systems, sequence organization, and repair strategies. One
such mechanism of the machinery of human-human interaction is
the use of gaze as a complex channel, alongside the speech itself, to
manage attention, expectation, turn-taking, and the progressivity
of interaction. One aspect of this complex machinery that we take
advantage of here is the use of ‘cued-gaze’ [53] in human-human
communications used for one party in a conversation to indicate
their readiness to hear. Combining this with the longstanding prob-
lems of lists of options or instructions being provided by speech
agents [40] being either slow or difficult to manage, we designed an
interaction where the list progressivity was tied to the ‘cued-gaze’
of the user towards the speech agent.

Since conversation is the primary modality for interaction with
speech interfaces, visual feedback is not always available. Little
is known about how using gaze could affect users’ intentions to
interact with the system when failures occur. In this paper, we
conducted a user study to compare the interactions of ‘cued-gaze’
and spoken commands in advancing a list and when things go
wrong. The following hypothesis guided this work:

• H0: Userswill be able to advance through a list of instructions
by giving visual attention to the agent as fluently as using
verbal instructions.
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• H1: Switching modality to affect a recovery will take longer
and cause more frustration compared to staying with the
same modality.

We conducted a laboratory study of single user interaction with
Tama, with the hypothesis that gaze interaction would result in the
participants having a better impression of the interaction when the
system fails [34, 69] and be drawn away from their ongoing task
less [13].

In a Wizard-of-Oz setting, participants (N=12) were instructed
to build a simple Lego tower by a smart agent, advancing the list of
instructions on what blocks to add using either speech or gaze. The
agent was designed to fail at specific points when providing the
instructions to the user, and the users were faced with the problem
of recovering from repetitions – where the system continued to
utter the same step – and errors – where the system made only an
error sound when they attempted to interact with it.

In the quantitative results, we show that ‘cued-gaze’ is as effec-
tive method of progressing lists as speech and also that it is (in
certain circumstances) more effective when errors of interaction
can be addressed by switching modalities to gaze. We also present
the results of video analysis of the interactions and repair strategies
carried out by our participants, showing the complexities of possi-
ble spoken repair strategies as opposed to the relative simplicity
of switching modality, and the challenges of effectively communi-
cating the meaning behind errors experienced when interacting
with CUIs. In our discussion, we point to other opportunities for
‘cued-gaze’ and the family of overt-gaze interactions of which it is
a part.

2 BACKGROUND
2.1 Speech Technology Development and

Interaction
Over the last few years, we have seen immense growth in the
research and development of speech systems. One of the most
popular applications of speech technology is smart speakers like
Amazon’s Alexa and others. Today, we can talk to these devices
in our home and make them perform actions on our behalf, like
search for movies, present instructions from a cooking recipe, or
turn devices on or off. Recently, there has been a growth of re-
search investigating interactions with speech agents. Looking at
Smart Speaker use in particular, Sciuto et al. [57] explore the ex-
perience of households who are using a conversational agent in
their homes. Their findings showed how families integrate con-
versational agents into their daily life. By analyzing the logs of 75
Alexa users, they concluded their results into four themes: how
people initially use Alexa, the physical placement of the device, the
daily patterns of conversational usage, and how children interact
with the device. Porcheron et al. [50] examined how users of smart
speakers practically and interactionally situate the device’s talk
within their ongoing conversational setting at home and how users’
formulate and direct queries to the device. These studies highlight
a number of similar problems in speech agent interaction, includ-
ing; troubles situating the interaction in an ongoing conversation,
troubles activating and verifying activation, and troubles learning
how to formulate and enunciate queries for these devices.

Interaction with speech agents tends to take a highly-task ori-
ented question and answer format, rather than being social or
conversational, which makes some users feel frustrated when in-
teracting with such systems [16]. Speech systems need to maintain
an understanding of context over multiple turns of interaction [10],
and ask appropriate clarifying questions to guide the user [37]. For
example, progressivity is a central feature of everyday conversa-
tion, as examined by Conversation Analysis. Hence, Fischer et al.
[19] examined how the orientation towards progressivity in the
talk -keeping things moving- might help us better understand and
design for voice interactions. While agent’s ability to engage in
dialogue has been studied quite extensively [9, 63], the conversa-
tional style of these agents has received less attention. However, it
has been shown that people’s perceptions of conversational agents
are influenced by the interaction style of the agent [47]. Speech
agents often fail to fit into multi-party conversations, for instance,
causing disruption when family members interact with the smart
speaker during a meal while others are conversing concurrently
(e.g., [50]). Precisely because of this gap, researchers take issue with
calling conversational systems conversational [40, 50]. A conver-
sational system must be designed with the ability to manage the
floor of interaction and, therefore, have mechanisms for handling
turn-taking, grounding, interruptions, and repair.

While the technology underlying speech interfaces have im-
proved in recent years, our understanding of the human side of
speech interactions remains limited [3]. Luger and Sellen [40] high-
lighted the limited functionality of existing commercially-available
voice interfaces and how it causes a gulf between their capabilities
and the users’ expectations. Users come with a set of expectations
about how spoken conversation should work outside the capability
of today’s speech technology [33]. Significant gaps still exist in
using theoretical frameworks to understand user behaviors and
choices and how they might be applied to specific speech interface
interactions.

2.2 Gaze in Human-Human Conversation
In social science, researchers have been exploring gaze interaction
since the mid-sixties. Much of the early work on gaze focused on
the role of gaze in conversation [2, 32]. Goffman [22] observed that
the direction of eye gaze plays a crucial role in the initiation and
maintenance of social encounters. Kendon [32] conducted a detailed
exploration of the function of gaze in face-to-face conversation. He
classified looking, or avoiding to look, at the conversational part-
ner as an indication of monitoring, regulating, concentrating, or
expressing emotion. Kendon summarised attentive gaze in conver-
sation by saying that people tend to look at the other participant
more when listening than when speaking and that the speaker’s
glances at the other person tend to be shorter than those observed
during listening [32]. In the study of the organisation of summons-
answer Schegloff [55] proposes that the occurrence of a first item
in a sequence, such as a summons establishes the relevance of the
next item. Thus, the absence of an answer to a summons might be
noted by the repetition of the summons, until an answer is obtained,
which then allows the summons to move on to further talk. So, if
a recipient fails to gaze at a speaker after an initial restart, that
can cause the production of a new restart, which will affect the
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repeating of the summons. In particular, restarts provides a speaker
with the ability to begin a new sentence at the point where the
recipient gaze is obtained, or alternatively to request a gaze from
the hearer.

Goodwin [23] proposed two ‘rules’ between the speaker and
the hearer in face-to-face conversation. The first is that a speaker
should obtain the gaze of his recipient during the course of a turn
at talk. Goodwin noted that “when the speaker has the gaze of the
recipient, a coherent sentence is produced. To have the gaze of a
recipient thus appears to be preferred over not having such gaze, and
this preference appears to be consequential for the talk the speaker
produces within the turn”. In this way, gaze is an important cue
that indicates that the hearer is listening to the speaker. This is
consistent with the possibility that gaze is one means available to
recipients for displaying to a speaker whether or not they are acting
as hearers. The second rule states that a hearer should be gazing at
the speaker when the speaker is gazing at the hearer. The speaker
can look away from the recipient, but the recipient should not look
away from a speaker looking at them. Obtaining the recipient’s
gaze within the turn is relevant to the speaker.

However, interacting with a CUI is not the same as interacting
with a human – and this difference must be understood and taken
into account during the design of such technology. Understand-
ing human interaction with CUI and conversational interaction
between people is a crucial step in improving the designing of such
systems. There has been a significant body of work showing how
people interact with robots and speech agents by drawing on their
expectations of human-human interactions [1, 4, 5, 8, 26]. Usually,
users’ behavior differs considerably in terms of the usage of in-
teraction modalities [27]. Therefore, to design multimodal input
interaction for existing and new applications, it is necessary to
understand how users would use those modalities in different situ-
ations [31]. Different modalities can be used to complement each
other, to enable a natural and intuitive interaction [62]. Using gaze
interaction is interesting as it could overcome some of the prac-
tical limitations of using speech as the only interaction modality
when interacting with a speech system. By following other persons’
gaze we gain access to their attentional focus, which is essential
for understanding their intended interaction with technologies for
example. A large body of the research has relied on gaze-cueing
paradigms, in which the influence of static gaze cues on attentional
processing is examined (e.g. [20, 36, 49]).

Porcheron et al. [50] suggested that a conversational system
must be designed with the ability to manage the floor of interac-
tion and, therefore, have mechanisms for handling turn-taking, and
grounding, interruptions, and repair. Building on human-human
interaction, this paper examines the use of gaze to initiate interac-
tion when advancing in a list of instructions, which is a common
communication task with voice-controlled interfaces in domestic
environments such as cooking [14, 15, 64].

2.3 Communication Breakdowns and Repair
The increasing popularity of digital home assistants, like the Ama-
zon Echo, and conversational assistants, like Siri, increase users’
expectations of voice as an effective communication method with

machines [40]. However, humans must work to adapt their com-
munication patterns to the needs of the machines, rather than
machines adapting to humans [28]. People shorten their sentences,
use simplified language, and repeat themselves in attempts to be un-
derstood by voice interfaces [28, 40, 48]. As a result, users of voice
interface technology become frustrated and can fail to learn the full
capabilities of the technology or abandon use altogether [7, 16, 40].
True conversational capabilities have not yet been fully realized
[50], and we need to understand better how human-technology
“conversations” can be improved.

The field of HCI has a well-established body of literature on how
humans verbally communicate with computers, robots, and other
devices. In 1987, Suchman framed acts of human-machine interac-
tion as a dialog between communication partners [60]. From this
perspective, the designer’s work is to enable human and machine
collaboration towards a shared understanding through continuous
acts of collaborative communication repair when breakdowns oc-
cur. Communication repair as presented in [7] “refers to the work
of restoring shared understanding after conversational partners
misunderstand each other. Essentially, the person who is talking
needs to rephrase or say something different because the person
they were talking to did not understand what they were saying
[43]”. Adjustments of speaking style to accommodate the listener
can take many forms and depend on people’s communication and
language abilities [65]. It was observed that people simplified their
speech to align with the robot, which highlights the compromise
that users make between effective interaction and natural speech
[66]. Research continues to demonstrate that humans adapt their
communication styles and patterns to match the machine, both
with robots [48, 61, 68] and computers [45, 46], rather than the
other way around. Humans shorten their sentences [48], use repe-
tition [6], increase volume [12] and hyperarticulate [45] as repair
strategies. These modification strategies are motivated by a desire
to achieve successful communication with computers [12, 46].

Despite the “conversational” interfacewith conversational agents,
people are not yet able to talk to technology in the same way that
they talk to other people [40, 51]. Users of conversational assistants
often need to shorten their queries to keywords since increased
utterance length can increase the likelihood of speech recognition
errors, both with conversational agents and with other humans
[28, 38]. With current systems, the burden of ensuring a successful
communication interaction with a conversational agent continues
to fall to the human in the conversation, with little support from
the conversational agent itself [17, 51].

While error handling could be implemented by adding explicit
error states when developing speech agents, speech repair detection
aims to detect and resolve such occurrences in a more general
case. Humans and machines perceive speech differently. In the
design of conversational agents, we need to understand the range
of behaviour that users expect and the range of behaviour that
they may attempt to employ when interacting with them. This
will allow us to understand potential breakdowns, and provide
support strategies within the interaction that match users recovery
procedures in challenging human-human interactions.
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Figure 1: The Tama Gaze-Aware Smart Speaker Platform.

3 EXPERIMENT
3.1 The Speech Agent
This study was conducted using the Tama smart speaker platform
[41] (Figure 1). Built on the open-source Mycroft.ai conversational
agent [56], the Tama platform is capable of both speech interaction
and gaze input and output. It uses a retractable spherical head
containing two full-colour LED eyes with 180 degrees of movement
laterally and 60 degrees vertically to provide gaze feedback. The
gaze input is detected by two OMRON HVC-P2 gaze detection
cameras built into the body, which also houses a 7- microphone
array (ReSpeaker v2.0), a speaker, and a Raspberry Pi v.3B. This
platform was extended with a browser-based Wizard-of-OZ control
panel allowing a researcher to control eye movements and color,
and define and control utterances to be spoken by the text-to-speech
system.

For this study, the wizard interface was used to control the de-
vice’s actions. The wake-word was disabled, and the eye gaze was
set to follow the user even when they were not looking at the sys-
tem. Subjects were instructed on building a Lego tower in a series
of spoken, numbered steps. For this experiment, Tama had two con-
ditions. In the Speech Interaction condition, the instruction list was
advanced with a variation of the spoken command ‘next step.’ In the
Gaze Interaction condition, Tama advanced the list using cued-gaze;
when the system had finished presenting an instruction, it would
wait until it received visual attention from the user before starting
the next one. In both conditions, the user could use simple natural
language commands to navigate through the list and ask the system
to move backward, forward, or jump to a specific step. However,
the wizard ignored any commands not directly about navigating
the list of instructions. In both conditions, the trial starts, and the
eyes go green, which means that it is listening to users, and the eyes
go pink when processing or replying. We engineered failures in the
interaction during the experiment to study the recovery strategies
in each condition.

3.2 Types of Failure
In this study, the interactions were designed to include failures
in both conditions. The failures were informed by taxonomies of
failures in previous studies of interaction with speech agents [19],
and in HRI [25], and represented typical reported speech agent
malfunctions. The failures when interacting with the system could

Figure 2: Speech agent instructing a user how to build a tower
of Lego.

be task-oriented (e.g., providing wrong answers or repeating the
same instruction) or interaction-oriented (e.g., giving no response
or not activating). All failures caused delays and increased the time
users needed to complete the task.

• No Response. The agent shows attention but plays the
Google Assistant error sound simulating being unable to act
upon or process user input.

• Repetition.The agent appears to respond to the interactions
but repeats the previous instruction, similar to [15, 39].

In both conditions, the interactions continued with the next item
in the list of instructions – even if the user took no action to rem-
edy the failing interaction – after five errors were presented to
the user. If they attempted a recovery, the next instruction would
be given, and the interactions would continue. In the speech con-
dition, a recovery attempt was deemed successful if it included a
reformulation of the verb in the intent - for example, changing the
command from ‘advance instructions’ to ‘go to the next step.’ In the
gaze condition, a recovery attempt was deemed successful if they
changed the gaze action they presented to the device from mutual
gaze to another gaze-based gesture or changed modality to give a
spoken command to the system. As such, interactions are consistent
across different conditions. The timing and the number of failures
were predetermined per condition in each sequence. They were
counter-balanced per condition (the two variations in each trial
contained the same failures but were reordered so that the failures
would not become predictable and expected). We have introduced
three failures, one error, and two repeats for each condition. As
noted below, the individual interactions in this experiment were
designed to be atomic. To make the repeats more obvious (as they
would be in a more complex task with familiar sequentiality, such
as cooking), each instruction in the list started with its place in the
instruction list, i.e., ‘Step 2’.

3.3 Lab Experiment
To ensure that the experiment wasn’t confounded by speech recog-
nition or gaze detection errors, we used a human wizard to control
the output of the system [52]. The wizard sat in an adjacent room,
watching through a high definition video call with the view of the
participant and Tama, and controlled the system’s speech output
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Table 1: Successful Interactions

Group N Mean SD SE

Successful Interaction 𝐺𝑎𝑧𝑒 170 9.626 5.119 0.393
Length (seconds) 𝑆𝑝𝑒𝑒𝑐ℎ 170 10.201 4.926 0.378

and gaze feedback. The wizarding system included an experiment
control interface (Figure 2) that managed the configuration and ex-
perimental conditions while recording all actions and interactions
with the system and related timings.

The studywas designed as a within-participants experiment with
counter-balanced conditions. In each condition, the participant
sat at a table with all the Lego pieces required to complete the
task. Tama was placed on the table in front and to the right of the
participant, 0.5 m away from the seating position of the participant,
at a 90 degree angle relative to them. The experiment was captured
by a one GoPro Hero 7 camera facing the user to capture their
interactions, with a second on a tripod above and to the left of the
user to provide an overview. As noted above, the participants were
also in the frame of a third camera providing the video link to the
wizard.

3.4 Tasks
The system (via the wizard) responded with the same task-based
dialogue policy and interaction protocol in both conditions. Each
condition started with a spoken introduction to the condition and
task, followed by a short demonstration task with five steps to
ensure that the user understood the instructions and the style in-
teraction for the condition.

The task was to follow a twenty-step list of instructions to con-
struct a simple Lego tower comprising 36 different colored and
sized bricks. This was chosen as an instructional interaction similar
to following a multi-step recipe, for example, which is a common
referential communication task with voice-controlled interfaces in
domestic environments [14, 15]. However, in contrast to a cook-
ing task, there were no cascading consequences where earlier ac-
tions would influence the performance or ability to complete later
steps in the Lego construction task. Keeping each step in the list
of instructions atomic enabled the focus of the experiment to be
placed squarely on exploring the different interaction modalities
used to advance through the list of instructions and explore the
recovery strategies that the users employed when a failure con-
dition was presented to them. This can also be seen as a way to
normalize the experiences, expectations, and skills of the partici-
pant – much in the same way as random strings are used in typing
experiments [18, 29, 54].

Participants did not need to worry about where to put the blocks,
and they were instructed to build straight up. Yet, the instructions
were non-trivial, so users had to interact with the agent to know
what color and size of Lego block needed to be found and how
many of them should be added for that particular step.

The experimental setup included a variety of blocks in five dif-
ferent colors (red, white, blue, yellow, and green), each presented
in five sizes named for the number of connecting ‘dots’ on the top

Table 2: Induced Error Interactions

Condition N Mean SD SE

Problematic Interaction 𝐺𝑎𝑧𝑒 30 25.652 10.814 1.974
Length (seconds) 𝑆𝑝𝑒𝑒𝑐ℎ 30 33.633 15.941 2.910

of the block (two, four, six, eight, and ten). Not all sizes and color
combinations were used in the building of the tower.

Participants were told that they were being timed on building
the tower, with a time penalty added for each missing or wrong
block, and that the winner would receive a small prize on top of
the 100 SEK1 gift card for participation in the study.

After each condition had been completed the participants were
asked to fill out a Subjective Assessment of Speech System Inter-
faces (SASSI) questionnaire [24] related to their interaction experi-
ence. The SASSI questionnaire has been used to measure the usabil-
ity of diverse applications such as speech-based access to health
information, social robots, and conversational agents [11, 44, 58].
The questions were presented as 7-point Likert scale items.

3.5 Participants and Procedure
12 participants were recruited from the local university by word-
of-mouth (6 females and 6 males, average age were 28) and were
provided gift cards as compensation for their time. Participants
signed a consent form before participation and were instructed
that the study was about experimenting with different ways of
delivering lists of instructions with a voice agent. First, participants
filled out an entry questionnaire that collected demographics and
their familiarity with speech technologies and speech interfaces.
Most of them (11 participants) had interacted at least once with
speech technologies, and 4 had a smart speaker at home.

Then the task and the system were introduced to the partici-
pants. The experimenter explained and ensured that the partic-
ipants understood that the system was based on a commercial
speech agent but that the wake-word had been turned off and it
had been restricted to only respond to commands that were directly
in relation to navigating through the list of instructions. While
the initial explanation was scripted, the experimenter checked that
this was understood and provided expanded explanations where
necessary. While the participants were deliberately not given exam-
ple commands to use with the speech interaction condition, they
were informed that most commands related to the task that the
researchers had tested had worked as expected. Following this, the
experimenter returned to control the system, and the first of the
counter-balanced conditions commenced. Each started with an in-
troduction to the condition and the task articulated by the system,
followed by a short demonstration task with five steps to ensure
that the user understood the instructions and the style interaction
for the condition.

After the five-step pre-task was complete, the participants were
given the option to repeat it as necessary until they were comfort-
able with the interaction. The main building task would then be
triggered, which started with the instruction, to begin with a fresh

1Around 10 euro or U.S. dollars
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Figure 3: Modality Switches and Reformulations

base sheet of Lego. The agent would then step through the list of
twenty instructions, advancing according to the interaction para-
digm of the condition. It would also provide additional task-based
information if necessary, and would reply to clarification questions
related to navigation through the list or repeating the previous
instruction. If a user deviated from the interaction protocol (e.g.,
“What is the best way to build the tower?”), Tama would respond “I
am sorry, I do not understand.”

When the final block had been placed, the system announced
that the tower had been completed. The participants then filled in a
SASSI questionnaire for that interaction paradigm before repeating
the task in the second condition. After the final condition and
questionnaire, the participants were debriefed and informed that
the systemwas not autonomous and that the errors were engineered
to understand better how to design more robust interactions for
spoken and gaze interaction.

3.6 Data
Beyond the demographic questionnaire, there were three types of
data collected for each participant: the video recording of their
interactions with the system, the system logs of actions and interac-
tions, and the SASSI questionnaire answers for each condition. Each
interaction was timestamped, transcribed, and coded depending on
its condition and the outcome of the interaction. Essentially, for
every participant we acquired a log of what was said and what was
recognised by the system for both gaze and speech conditions.

Due to technical errors, of the 12 participants who completed
the study, we collected 10 full sets of interaction logs and video
data for 12 Speech interaction conditions and 11 Gaze interaction
conditions. As a result, the following quantitative results are based
on 10 participants, and the video analysis is based on 11.

Table 3: Modality Switches and Reformulations

Condition N Mean SD SE

Time 𝐺𝑎𝑧𝑒 25 22.414 8.086 1.617
(seconds) 𝑆𝑝𝑒𝑒𝑐ℎ 19 31.248 17.039 3.909

Figure 4: Induced Error Interactions

4 RESULTS
In reporting the results, focus initially on the hypothesis outlined
in the introduction, namely that A)Users are able to advance through
a list using gaze and that B)Switching modalities from gaze to voice
in the gaze interaction condition to deal with an error would take
longer and be more frustrating to users than reformulating a spoken
command. The assumption is that the code-switch involved in
changing interaction modality would take additional time and be
more taxing for the participant [21, 30, 67].

In examining these interactions, we look at the length of time
taken to complete the building steps. Following from previous work
[41], we use this length as a proxy for success – where successfully
interacting with the system takes less time due, in part, to the lack
of hesitations and repetitions. Outside of the engineered fail states,
there were no interactions where (after the initial training stage)
the participants were unable to advance the list on command.

4.1 Advancing a List with Gaze
In taking each interaction as an independent point, when the inter-
action went smoothly, we are able to show that there is no signifi-
cant difference between the Gaze and Speech conditions (Welch’s
t-test, t−1.054, p0.293). In total, there were 340 successful interac-
tions included from the 10 recorded tests.

This result supports the hypothesis that taking advantage of
cued-gaze to advance through a list of instructions with a speech
agent is a viable interaction strategy.

4.2 Modality Switches and Reformulations
During each condition, there were three error interactions induced,
up to a total of five times, in which the agent either repeated the
previous utterance or produced an error noise until the participant

Table 4: Reformulations and Repair

Test t df p Cohen’s d

Length Gaze < Speech −2.088 24.158 0.024 −0.662
(Seconds) two-sided −2.088 24.158 0.047 −0.662

Speech < Gaze −2.088 24.158 0.976 −0.662

Note. Welch’s t-test.
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Figure 5: Reformulating Speech

changed the way in which they attempted to advance the list –
either changing modalities from gaze to speech, or reformulating
the spoken command.

In total, there were 30 errors induced in the 10 trials included in
the quantitative analysis (Table 2). While there was a longer mean
length of time taken to recover from errors in the speech condition
than in the gaze condition (as can be seen in Table 2 and Figure
4), there was no significant difference between the time taken to
complete the interactions in the gaze and speech conditions overall
(Welch’s t-test, t−2.540, p0.993).

However, of these, not all resulted in the participants reformu-
lating in the allotted 5 attempts. In the speech condition, 5 repeated
interactions and 6 errors were not reformulated, and in the gaze
condition, 2 repeated interactions and 4 errors ran for the full 5
attempts without the user recovering. This resulted in 25 gaze in-
teractions, and 19 speech interactions that included a successful
recovery, the details of these interactions can be seen in Table 3 and
Figure 3. Looking at the timings of just these interactions, there
was a statistically significant difference (Table 4, p 0.024), indicating

that these interactions were shorter in the gaze condition than in
the speech condition (all be it with a small effect size).

This disproved our initial hypothesis that the context switch
involved in changing modality from gaze to speech would take
longer than staying with the same modality and reformulating the
spoken command. In order to understand why this happened, we
examined the videos of how the participants recovered from the
errors in the interactions.

4.3 Reformulation in List Control
In the transcript from P5 shown in Figure 5 we can see one issue
with the comparison conducted in the quantitative analysis above.
In designing thewizard, we opted for reformulation of the command
to take the form of changing the verb in the intent uttered. However,
as we can see from P5’s attempt to recover from the 3rd error they
encountered, there are multiple strategies available to attempt to
repair interactions with a failing speech agent. After the error tone,
P5 over enunciates the same command in the first two attempts,
first slightly, then with more emphasis on ‘N’ in ‘Next Step’. When
this fails, the participant opts for lengthening the utterance and

Figure 6: Switching Modalities
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Figure 7: Misunderstanding the Error

attempts ‘What is the next step’ and adds a ‘please’. Asking ’Do
you understand?’ and getting a standard reply, the participant then
reformulates to match the wizard’s criteria with the command ‘Go
to step 15.’

4.4 Switching Modalities
As we can see from the example from P3 shown in Figure 6, when
the participants switched modalities to advance through the list, the
flow of interaction worked well. In this case, P3 notices that there
is a repetition happening the first time the command is repeated
triggers another repetition with gaze, which she doesn’t act upon,
then verbalized the command ‘Next.’ This was the first induced
error in the gaze condition for this participant, although in this case
Gaze was the second of the conditions they experienced meaning
that they were primed to be aware of repeated steps. In contrast to
the multiple attempts to ensure understanding with small changes
in the spoken commands in the previous section, here the switch
of modalities is a clear change in interacting with the system.

Of the 11 participant videos analyzed, 7 interacted with the
system in this way when their gaze failed to advance the list as
expected. In both gaze and speech conditions, there were a number
of different ways that the system ‘going wrong’ went wrong.

4.5 Understanding Errors
For a surprising number of our participants, the instructions that
they should build the ‘correct’ tower based on the twenty instruc-
tions they were to be given by the system combined with the step

number being stated at the start of each one wasn’t enough to
encourage enough attention to notice the repetitions. Of the 7 un-
recovered repetition interactions in 3 cases, the participants added
the same block 5 times.

Even when they noticed that there was something wrong with
the interaction, in the case of the error sounds rather than repeated
spoken instructions or noticing that the repetition is taking place, a
number of participants would simply brute force the error. Looking
or speaking in exactly the same way until they listened to the error
5 times and the system progressed.

Another challenge for users is understanding the errors, this
can be seen in Figure 7. In all of the error interactions for P4 the
participant didn’t attempt to repair the interaction with the system.
Instead, they took the repetition and error noises to mean that they
had made a mistake in building their Lego tower. As we can see
in this example, each time the agent produced an error noise, the
participant moved the previously placed block around his construc-
tion until the maximum five errors had been presented to them. To
a lesser extent, this behaviour was also seen in other participants,
where for P8 their initial reaction to the repetition was to attempt
to more firmly connect the previous Lego block to the tower and
for P1 and P9 to demonstrate their ‘correctness’ by stating out-loud
the contents of the previous command ‘It was blue four, I’m sure’
(P9) for the wizard, camera, or robot to hear.

Table 5: Mean-SD table for SASSI main effects, and t-test results.

Gaze Speech
Factor name Mean SD Mean SD t df p
System response accuracy 4.33 1.81 4.08 1.89 0.94 22 0.36
Likeability 5.37 1.56 5.27 1.58 0.18 22 0.86
Cognitive demand 3.45 2.02 3.28 1.74 0.97 18 0.17
Annoyance 4.07 2.06 3.42 2.09 1.01 20 0.32
Habitability 3.85 1.76 3.35 1.90 1.35 22 0.19
Speed 5.63 1.35 5.79 1.25 -0.73 21 0.47
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Figure 8: SASSI mean ratings bar chart. Error bars indicate standard error of the mean.

4.6 User Perception of the Interactions
It is worth noting that the SASSI questionnaire contains some items
with a negative weight. Therefore, when coding the rankings, such
items have to be reversed to ensure consistency. The final ratings
for each of the 6 factors presented in Table 5 are computed by
averaging the corresponding items within that factor. Consequently,
after reversal of ratings and averaging, we can state that the higher
the rating for a factor, the more positive it was perceived to be. The
SASSI scores analysis was based on the data from all 12 participants,
where each participant interacted with the Tama robot in both Gaze
and Speech conditions to complete 20 instructions. 7 participants
interacted using Gaze first.

To determine if the interaction condition was affecting the sub-
jective SASSI ratings of the participants, a series of t-tests were
conducted. The measurements were the six factors from the SASSI
questionnaire: system response accuracy, likeability, cognitive de-
mand, annoyance, habitability, and speed. Table 5 and Figure 8
shows the mean and standard deviation for each measurement.
Gaze was evaluated as better in all factors except for speed; how-
ever, the t-tests confirmed that these differences were not significant
in any of the factors. This indicates that participants have perceived
interaction with speech and gaze similarly in all types of interac-
tions (i.e., successful interactions and those in which we induced
failure).

5 DISCUSSION
There has been a lot of discussion over the years on conversational
system design drawing from conversation analysis and social sci-
ence (e.g., [41, 42]). Here we have shown how relatively small parts
of the complex embodied and structured methods humans use to
manage interactions with each other can be used to augment certain
types of CUI interaction. When taking this further, we plan to add
the ability to progress through lists with a cued gaze to real-world
tasks in the domain of cooking. The ability to signal to the system
not to read the whole of a recipe while the user is engaged in one
small part of it, and without adding additional interaction steps the
user must learn and perform beyond paying overt visual attention
to the system holds promise, as we have shown here.

While the task performed by the participants is much less com-
plex than the interactions uncovered in single or multi-party meal

preparation (e.g., [35, 70]), the core interaction presented here pro-
vides the opportunity to be interwoven with other methods of
interaction to better fit the diverse contexts and needs of users
engaged in such a common and complex task.

In embedding this interaction sequence in an autonomous, or
semi-autonomous, system trial in a more complex setting, we hope
to uncover more methods by which gaze, and speech can be used to
augment and support the progressivity of list interaction. Beyond
this, when the interaction space is opened to include other intents,
it will be of great interest to observe and probe where users attempt
to interact in the same way – expecting certain replies to be tied to
ongoing attention but not others, or observably drawing attention
away from the system in an attempt to pause without being forced
to talk over the speech agent.

We don’t feel that the goal here should be to mimic human-
human interaction. As Shneiderman [59] argues, the complexities
of face-to-face communication are effective for human-human in-
teraction, but systems often the lack human-level understanding
of these complex social signals and this causes problems when
they are naively applied to human-computer interaction. “By ap-
preciating the differences between human-human interaction and
human-computer interaction, designers may then be able to choose
appropriate applications for human use of speech with comput-
ers” [59].

6 CONCLUSION
In conclusion, we have shown that taking advantage of cued gaze to
indicate that the agent should advance through a list is a valid option
for the design of gaze-enabled speech agent interaction, comparable
in our controlled lab experiment to using voice commands.

In comparisonwith reformulating a spoken command, the counter-
intuitive finding that the modality-switching cost was negligible in
terms of user experience as measured by the SASSI questionnaire
and significantly less in measured interaction time was surprising.

Through this we have shown that in providing multiple modali-
ties of interaction for the same intent, CUI designers can provide
users with tools to better aid them in recovering from errors. We
see this as one step forward in the ongoing challenge to design
learnable, robust, and universal conversational user interfaces.
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